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While MRI contrast agents such as those based on Gadolinium are needed for

high-resolution mapping of brain metabolism, these contrast agents require

intravenous administration, and there are rising concerns over their safety

and invasiveness. Furthermore, non-contrast MRI scans are more commonly

performed than those with contrast agents and are readily available for

analysis in public databases such as the Alzheimer’s Disease Neuroimaging

Initiative (ADNI). In this article, we hypothesize that a deep learning model,

trained using quantitative steady-state contrast-enhanced structural MRI

datasets, in mice and humans, can generate contrast-equivalent information

from a single non-contrast MRI scan. The model was first trained, optimized,

and validated in mice, and was then transferred and adapted to humans.

We observe that the model can substitute for Gadolinium-based contrast

agents in approximating cerebral blood volume, a quantitative representation

of brain activity, at sub-millimeter granularity. Furthermore, we validate the

use of our deep-learned prediction maps to identify functional abnormalities

in the aging brain using locally obtained MRI scans, and in the brain of

patients with Alzheimer’s disease using publicly available MRI scans from ADNI.
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Since it is derived froma commonly-acquiredMRI protocol, this framework has

the potential for broad clinical utility and can also be applied retrospectively to

research scans across a host of neurological/functional diseases.
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Introduction

Gadolinium-based contrast agents (GBCAs) are

intravenously administered with Magnetic Resonance

Imaging (MRI), and they are most widely known for their

utility in mapping, enhancing, and detecting structural brain

lesions such as those found in cancer, infections, or bleeding

(Borges et al., 2012; Lohrke et al., 2016; Shen and Duong, 2016).

Another utility of GBCAs, far less popular until recent years,

is to identify functional abnormalities, such as those that alter

brain metabolism in aging, neuropsychiatric disorders, and

neurodegenerative diseases (Belliveau, 1991; Lewandowski et al.,

2013; Schobel et al., 2013; Khan et al., 2014). For these functional

lesions, GBCAs can be used to generate high-resolution cerebral

blood volume (CBV) maps, thereby deriving a quantitative

correlate of metabolic dysfunction that is otherwise invisible to

MRI without contrast.

However, recent studies have begun to call the safety of

GBCAs into question (Quattrocchi and van der Molen, 2017;

Ramalho et al., 2017; Guo et al., 2018; Dillman and Davenport,

2020). GBCAs contain gadolinium, a heavy metal, and are

injected into a vein to improve the visualization of internal

organs, blood vessels, and tissues during an MRI. After being

administered, GBCAs are mostly cleared out from the body

through the kidneys. However, trace amounts of gadolinium

may stay in patients’ bodies, including the brain, for months

to years after receiving GBCAs. GBCAs may also increase the

risk of nephrogenic systemic fibrosis, a rare but serious disease,

in people with severe kidney failure. Even if these concerns are

addressed, GBCA administration requires intravenous access,

a requirement that places risks on patients and healthcare

practitioners, as well as limiting its application in cases when

contraindicated (Guo et al., 2018). Thus, there is a need to find

a “GBCA substitute”, one that can generate GBCA-equivalent

information from a non-contrast MRI scan.

Apart from other alternatives, one solution may lie in

the non-contrast MRI scans themselves. The main purpose of

GBCAs is to selectively highlight signals from the blood so that

the blood vessels can visually stand out from the surrounding

brain tissues. However, though not visually apparent, such

blood-tissue contrast is also present even in non-contrast MRI

scans. The underlying reason comes from magnetic resonance

physics. The intensity of a voxel in a non-contrast MRI scan

is determined by the physical properties, namely the proton

density (PD), the T1-, T2-, and T2*- relaxation time constants,

of the corresponding material within that voxel. Importantly,

blood and different brain tissues have distinct T1 relaxation time

constants. At 3 Tesla, the average T1 relaxation time constants

of the white matter, the gray matter, and the blood are 866.9,

1433.2, and 1984.4 ms, respectively (Hasgall et al., 2022). In

addition, a previous study has shown that some dark structures,

identified mainly as vessels, are frequently misclassified as the

cerebrospinal fluid (CSF) in T2/PD MRI (Dugas-Phocion et al.,

2004) and further demonstrated that ignoring vessel contrast

when handling partial volume effect can also lead to an over-

estimation of the CSF variance in the intensity space. Other

studies have also shown that vessels appear darker than brain

tissues on T2*-weighted gradient echo magnetic resonance

(GRE) images due to shorter T2* relaxation (Small et al.,

2000), and this contrast between blood vessels and brain tissues

has been named the susceptibility vessel sign (SVS) (Flacke

et al., 2000; Rovira et al., 2004). Hence, non-contrast MRI

scans are theoretically able to yield patterns of voxel intensities

to distinguish blood vessels from surrounding tissues, though

such differences are too subtle to reliably detect and quantify

with previous analytical or qualitative methods. Nevertheless,

according to magnetic resonance physics, at least a fraction of

the GBCA-contrast information due to blood vessels is present

and partially encoded, in non-contrast structural MRI scans

through a non-linear function.

Deep learning, a subset of machine learning, is an established

method for approximating non-linear functions using a data-

driven approach. A deep learning model should, therefore,

be able to learn how to optimally extract key features at

a voxel level, by inspecting MRI scans where GBCAs were

administered along with their non-contrast counterparts. As

such, a growing number of recent studies have begun validating

this assumption (Kleesiek et al., 2019; Liu et al., 2019; Li

et al., 2021). Among these, one study managed to use deep

learning to reduce the GBCA dose (Gong et al., 2018), but

not to completely substitute for it. Other studies succeeded in

obviating the need for GBCA (Kleesiek et al., 2019; Liu et al.,

2019; Li et al., 2021) but these deep learning models require

the acquisition of an array of multiple MRI sequences, some

of which are not widely or clinically available. Among these

studies that succeeded in obviating the need for GBCA, more
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modern deep learning-based methods are especially well suited

for this task and demonstrated favorable performance: for the

BayesUNet method (Kleesiek et al., 2019) with a comprehensive

multiparametric MRI protocol including pre-contrast T1-

weighted, T2-weighted, T2-weighted fluid-attenuated inversion

recovery (FLAIR), diffusion-weighted imaging (DWI) and

susceptibility-weighted imaging (SWI) sequences as the input

for predicting synthetic post-contrast T1-weighted sequence,

analysis of the whole brain showed a peak signal-to-noise ratio

(PSNR) of 22.967 ± 1.162 and a structural similarity index

(SSIM) of 0.872 ± 0.031; for the CGAN method (Preetha et al.,

2021) with pre-contrast T1-weighted, T2-weighted and FLAIR

sequences as the input, the model reached a median SSIM of

0.818 (95% CI 0.817 - 0.820); and the MMgSN-Net method (Li

et al., 2021) with pre-contrast T1-weighted and T2-weighted

sequences as the input achieved top-ranked scores in averaged

PSNR of 33.17± 2.14 and SSIM of 0.887± 0.042.

With these issues in mind, we hypothesized that a deep

learning model could extract GBCA-equivalent information

from a single and commonly-acquired high-resolution MRI

scan, by training and optimizing the model using a large and

unique GBCA MRI dataset. Previous deep learning studies

relied on GBCA datasets generated for radiological purposes,

where post-GBCA scans are, by necessity, re-scaled in order to

facilitate a radiologist’s ability to detect and characterize brain

abnormalities. Such re-scaling operations are performed in a

case-by-case manner without a universal scaling factor, thus

increasing the intersubject variability across a dataset.

Through our previous study in mapping functional brain

lesions that localize to specific regions of the hippocampal

formation, we have extensively used GBCAs to generate

quantitative, high-resolution CBV maps (Small et al., 2011;

Pavlopoulos et al., 2013; Schobel et al., 2013; Brickman et al.,

2014; Khan et al., 2014; Provenzano et al., 2020). By design,

these quantitative maps preserve scaling with respect to the

post-GBCA image. While not the original intent, we have

accrued a large-scale dataset with reduced inter and intrasubject

variability, which we predicted would benefit the training

of our model. In parallel to generating a large-scale and

quantitative GBCAdataset in humans, we have also accumulated

a similar MRI dataset in mice (Moreno et al., 2006; Khan

et al., 2014). Again, the original intent was to validate patterns

of hippocampal dysfunction observed across disease states;

however, because these animal study subjects were siblings with

identical genetic backgrounds, this dataset is likely to contain

less variability than possible in humans.

In this study, we exploited this distinct cross-species and

quantitative GBCA dataset. Beginning with mice to prove

the concept, we first designed, optimized, and trained a deep

learning model to synthesize GBCA enhancement in the mouse

brain from the T2-weighted structural MRI. We further adapted

the proposed deep learning model to the human dataset and

validated that it can also indicate GBCA enhancement in the

human brain from the T1-weighted MRI. The deep learning

model will be referred to herein as “DeepContrast”. We then

utilized this DeepContrast technique to study brain aging

and Alzheimer’s disease, applying it to both in-house datasets

from an aging study, as well as to the publicly available ADNI

dataset from Alzheimer’s patients and age-matched controls.

The studies conducted are outlined in Figure 1. Our results

demonstrate that trained deep learning contrast enhancement

models can successfully identify and localize brain functional

changes that occur through aging and Alzheimer’s disease

previously only identifiable with GBCA methods.

Materials and methods

As an overview, we conducted 4 sets of studies, as

summarized in Figure 1: Healthy Mouse, Healthy Human,

Human Aging, and Human AD. In the first two studies,

we qualitatively and quantitatively assessed the ability of

our proposed DeepContrast model to predict the GBCA

enhancement in healthy mice and human brains. In the latter

two, we first conducted pilot studies to validate whether

the DeepContrast-synthesized CBV maps exhibited the same

patterns observed from real CBV data in prior research. Then

we performed utility studies to demonstrate the potential use

cases. Due to the inherent differences between the Aging and

AD studies (presence vs. absence of ground truth, continuous

vs. categorical, etc.), the utility studies were designed differently.

In this section, we will describe the data source, data

preparation, and detailed analyses performed.

Animal subjects and human participants

Healthy mouse

We used 49 healthy adult C576J/BL male mice (12–14

months old).

Healthy human

We aggregated the healthy human MRI data from previous

acquisitions at Columbia University. As we mentioned in the

Introduction section, these scans were originally acquired for

the purposes of mapping functional lesions. This included 598

participants (16–94 years old) with single acquisitions and

another 11 participants with baseline and follow-up acquisitions

14 days apart.

Human aging

For both the pilot and utility studies, we used scans

from 177 participants (20–72 years old) that were cognitively
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FIGURE 1

Overview of the studies conducted. We first performed proof-of-concept studies in mice to validate our hypothesis that deep learning can

extract information equivalent to Gadolinium-based contrast agent (GBCA) contrast enhancement from a single-modal non-contrast MRI scan,

and then conducted extensive analyses in humans to scrutinize the capability of this proposed approach. Study: A study conducted; Aim: The

purpose of the study; Source: where the imaging data come from; MRI: modality/type of data used in the study; Model: specific DeepContrast

model used in the study. AD: Alzheimer’s disease; ADNI: Alzheimer’s Disease Neuroimaging Initiative dataset; CBV: cerebral blood volume;

Gd-Uptake: GBCA contrast uptake maps; T2W: T2-weighted scans; T2W-CE: T2-weighted contrast-enhanced scans; T1W: T1-weighted scans;

T1W-CE: T1-weighted contrast-enhanced scans.

normal. These 177 participants were a subset of the 598 healthy

participants. The selection criteria will be described in the

following ‘Preprocessing and partitioning’ section.

Human AD

For the pilot study, we selected 50 cognitively normal (CN)

and 50 Alzheimer’s disease (AD) participants, each with two

back-to-back repeated scans from ADNI (Mueller et al., 2005),

resulting in a 100-participant (60–90 years old) dataset. For

the utility study, we prepared a larger, 2,580-participant (50–

100 years old) dataset from ADNI, with 1290 CN and 1290

AD participants.

Image acquisition protocols

Healthy mouse

We used CBV-fMRI to image male Wildtype (WT) mice

used in the healthy mouse study, with the imaging protocol

as previously described (Moreno et al., 2006). A Bruker

BioSpec 94/30 (field strength, 9.4 T; bore size, 30 cm) horizontal

small animal MRI scanner equipped with CryoProbe and

software ParaVision 6.0.1 (Bruker BioSpin, Billerica, MA, USA)

and a 23-mm 1H circularly polarized transmit/receive capable

mouse head volume coil were used for the imaging. Mice were

anesthetized using medical air and isoflurane (3% volume for

induction, 1.1–1.5% for maintenance at 1 liter/min air flow,

via a nose cone). A flowing water heating pad was used to

maintain the body temperature at around 37◦C. Sterile eye

lubricant was applied before each scan. T2-weighted images

were acquired before and 36 min after intraperitoneal injections

of the GBCA-based contrast agent Gadodiamide (Omniscan; GE

Healthcare, Princeton, NJ, USA) at the dosage of 10 mmol/kg.

T2-weighted images were acquired with Refocused Echoes

(RARE) sequence (repetition time (TR) = 3,500 ms, effective

echo time (TE) = 45 ms, rapid acquisition and relaxation

enhancement (RARE) factor = 8, voxel size = 450×76×76 µm).

Healthy human

The images were acquired under a steady-state CBV-

fMRI protocol as previously described (Khan et al.,

2014). A gradient echo T1-weighted scan (TR = 6.7 ms,

TE = 3.1 ms, field of view (FOV) = 240×240×192 mm,

voxel size = 0.9×0.9×0.9 mm) was acquired before a pair

of un-scaled T1-weighted images (TR = 7 ms, TE = 3 ms,

FOV = 240×240×196 mm, voxel size = 0.68×0.68×3 mm),

all using a Philips Achieva 3.0-T MRI scanner. The image

resolution used results from a systematic exploration of the scan
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protocol’s parameters. Scans were acquired before and after a

bolus injection of a GBCA-based contrast agent (Omniscan, GE

Healthcare).

Human aging

The data used in the Human Aging study was a subset of the

Healthy Human study, and hence the protocols were identical.

Human AD

The images included in our studies were acquired

using a 3D magnetization prepared rapid gradient echo

(MP-RAGE) protocol, yielding near-isotropic images (voxel

size ≈ 1×1×1 mm). More details can be found in the official

documentation of ADNI (Mueller et al., 2005).

Preprocessing and partitioning

Healthy mouse

In total, 49 WT mice were used in this study. Whole brain

T2W MRI scans before (T2W) and 35 mins after (T2W-CE)

intraperitoneal injection of Gadodiamide were acquired. The

Gd-Uptake ground truth was quantified with the standardized

delta-R2, which was derived using the samemethod as discussed

before (Moreno et al., 2006), followed by standardization to the

dynamic range of [0, 1]. We used 3D PCNN (Chou et al., 2011)

with the manual correction to generate brain masks, which we

used as training fields over which the model was optimized

and performancemetrics were calculated. A train-validation-test

ratio of 8:1:1 was applied in the Healthy Mouse Model training.

Healthy human

T1-weighted MRI scans were acquired using the protocols

as described previously (Brickman et al., 2014; Provenzano

et al., 2020), before (T1W) and 4 min after (T1W-CE) a

bolus intravenous injection of Gadodiamide. Unlike many other

similar studies, during the MRI acquisition for the same session,

the receiver gain was intentionally kept constant and the offset

was set to zero. As a result, the T1W and T1W-CE scans

shared the same scaling and zero shifting, and hence the same

voxel intensity between each T1W/T1W-CE pair corresponds

to the same relaxation-time property in the magnetic resonance

physics context. Each T1W and T1W-CE pair was spatially

aligned when provided. For intensity normalization, each T1W

scan was compressed to the dynamic range of [0, 1], and

the corresponding T1W-CE scan was scaled by the same

factor to preserve the voxel intensity correspondence. The Gd-

Uptake ground truth was quantified with the steady-state MRI

method (Brickman et al., 2014), by subtracting the normalized

T1W scans from the respective T1W-CE scans. We generated

brain masks using the BET function in FMRIB Software Library

(FSL) (Jenkinson et al., 2012), which we used as training

fields over which the model was optimized and performance

metrics were calculated. We generated tissue label maps using

the FAST function in FSL for tissue-of-interest analyses. The

train-validation-test split yielded 326 for training, and 93 for

validation, while 179 participants were left for the test set.

Human aging

The 177-participant cohort used for the aging study was

a subset of the 179 participants in the test set of the Healthy

Human Model, where 2 participants were dropped due to low

segmentation quality as defined through a failure of processing

the FreeSurfer (v6.0.0) Parcellation. After normalization to the

dynamic range of [0, 1], the T1W scans were directly treated

as inputs to the model to generate the Gd-Predicted maps.

Synthesized CBV maps were then generated by applying the

same normalization method on the Gd-Predicted maps as we

would quantify CBV maps.

Human AD

For the large-scale utility study, we screened T1W MRI

scans and excluded all scans except for 3 Tesla MP-RAGE

acquisitions (Supplementary Figure S4b top left). After that,

we further performed propensity score matching (PSM) to

match the age distribution and eventually resulted in a dataset

with 1,290 scans of patients with AD and 1,290 scans of

age-matched CN volunteers (Supplementary Figure S4b bottom

left). A major challenge was that the appearance and anatomy

of the scans used in the AD study notably differ from those

used to train the DeepContrast Healthy Human Model. They

were acquired under the same field strength (i.e., 3 Tesla),

but specific scan parameters such as echo time and repetition

time are different between the ADNI protocol and the CBV-

fMRI protocol. Additionally, the participants in the AD study

are generally older (60–90 years old) and half of them harbor

Alzheimer’s pathology, thus resulting in a potential mismatch

in anatomy. We approached these issues by applying (1) affine

registration for T1W MRI data and (2) rigid registration to the

unbiased MNI152 template on the raw whole brain data and

then (3) minimizing the between-cohort appearance difference

using a dynamic histogram warping (DHW) algorithm (Cox

et al., 1995) as it was demonstrated to be among the best intensity

matching methods in medical imaging (Wagenknecht et al.,

2000). Specifically, we calculated the mean normalized-brain-

region 2048-bin histogram of each cohort derived a bin-to-bin

mapping between the cohorts and applied the mapping to each

individual scan in the AD study. In step (4), we minimized

the anatomical difference by diffeomorphic registration using

the Symmetric Normalization (SyN) algorithm (Avants et al.,

2009) prior to applying the DeepContrast model. Finally, we
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normalized the scans to the dynamic range of [0, 1] and

provided them to the model to generate the Gd-Predicted maps.

Synthesized CBV maps were then generated by applying the

same normalization method as we would quantify synthesized

CBV maps and up-sampled to a voxel size of 1×1×1 mm. The

data pre-processing is illustrated in Supplementary Figure S4a.

The prepared cohort with a total of 2580 T1W scans and

2580 synthesized CBV scans, were randomly assigned to train,

validation, and test sets at an 8:1:1 ratio. Randomization was

performed on the participant level to prevent data leakage. AD

and CN participants were independently randomized to balance

the presence of both classes in each set. The data distribution was

summarized in the right half of the Supplementary Figure S4b.

For the pilot study, we used a subset containing 50 AD

and 50 CN participants each with two back-to-back repeated

scans. Compared to the large-scale utility study, the sample size

was reduced to accommodate the voxel-based data analysis tool

(SPM12) used in the pilot study. Data processing was the same

as above.

DeepContrast model implementation

All model variants developed in our studies, as mentioned

in Figure 1, shared the common residual attention U-Net (RAU-

Net) architecture (Figure 2).Model inputs were the non-contrast

MRI scans, while the outputs were the corresponding predicted

GBCA contrast (Gd-Predicted). The inputs and outputs were

2D slices of equal dimension since the MRI scans were acquired

under 2D protocols. The slice direction was defined as the axis

with the lowest spatial resolution, which was axial for Healthy

Mouse scans and coronal for Healthy Human scans.

The RAU-Net is an extension of the arguably most

popular deep learning architecture in medical imaging, the U-

Net (Ronneberger et al., 2015), with the addition of residual

blocks (He et al., 2016) and the attention gates (Vaswani et al.,

2017; Oktay et al., 2018). As an example of a convolutional

neural network (CNN), the U-Net extracts imaging features by

utilizing local convolutions along the entire image or volume.

The U-Net consists of multiple encoding layers across which

the image dimension shrinks whereas the feature dimension

increases so that compact high-level abstractions are generated

along the process, and the same number of decoding layers to

decipher these abstractions into image space information. The

add-on residual blocks simplify the entities to be approximated

across each layer and, therefore, enables training of deeper

networks, while the attention gates learn to differentially

enhance or suppress specific regions in the feature maps

so that the downstream outcomes are better represented for

targeting objective.

Specifically, the encoding and decoding paths consist of

the same number of residual convolution blocks that utilize

concatenation, attention mechanisms, and skip connections

such that layers feed not only into the next layer but into the

layer after the next layer. On the encoding path, each residual

block is followed by amax-pooling layer, and the last featuremap

feeds into a bottleneck layer with 3×3 convolution and batch

normalization, connecting the deepest layer to the decoding path

with several more blocks alternating one un-pooling layer and

one residual block. Skip connections concatenate the output of

each dense layer in the encoding path with the respective un-

pooled feature map of the same size before feeding it as input

to the decoding residual block. The output of the last decoding

layer is the input for a 1×1 convolution layer that produces the

final Gd-Predicted map.

Healthy mouse model

Themodel (Supplementary Figure S1) used inmouse studies

was a 2D RAU-Net that consisted of 5 encoding and decoding

layers. The model input was a 2D axial slice of the mouse brain

scans. Adam optimizer with a learning rate of 0.001 was used in

this study. Our batch size was 3 and the loss function was mean

squared error (MSE).

Healthy human model

The model (Supplementary Figure S2) used in the healthy

human study and further applied to the Aging and AD studies

was a 2D RAU-Net that consisted of 6 encoding and decoding

layers. The model input was a 2D coronal slice of the human

brain scans. SGD optimizer with an adaptive learning rate

handle with a 0.1 initial learning rate was used in this study. Our

batch size was 4 and a robust adaptive loss function (Barron,

2019) was utilized. The robust adaptive loss function is

a generalization of the Cauchy/Lorentzian, Geman-McClure,

Welsch/Leclerc, generalized Charbonnier, Charbonnier/pseudo-

Huber/L1-L2, and L2 loss functions. By introducing robustness

as a continuous parameter, the robust adaptive loss function

allows algorithms built around robust loss minimization to

be generalized, which improves performance on basic vision

tasks like calculating the intensity mapping function in

our case.

Statistical methods

Healthy mouse and healthy human

Prediction vs. ground truth similarity assessment

Peak signal-to-noise ratio (PSNR), structural similarity

index (SSIM) (Wang et al., 2004), Pearson correlation

coefficient (P.R), and Spearman correlation coefficient (SR)

were used to quantify the performance of all the DeepContrast

models. PSNR, Pearson correlation coefficient, and Spearman

correlation coefficient were evaluated within the brains or

Frontiers in AgingNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnagi.2022.923673
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnagi.2022.923673

FIGURE 2

Training strategies of the various DeepContrast models implemented. (A) This training strategy applied to the Healthy Mouse Model.

Preprocessing includes intensity normalization and brain extraction. Ground truth Gd-Uptake was derived using the standardized delta-R2

equation. Note that there is an additional standardization step that maps the dynamic range of the standardized delta-R2 to the range of [0, 1],

before the application of the brain mask. The loss function was calculated between the Gd-Uptake and the predicted version only using the

voxels within the brain mask region. (B) This training strategy applied to the Healthy Human Model. Preprocessing included intensity

normalization and brain extraction. Ground truth Gd-Uptake was derived using the steady-state delta-R1 equation. The loss function was

calculated between the Gd-Uptake and the predicted version only using the voxels within the brain mask region.

subregions, and SSIM was calculated in the minimum bounding

box around the brains or subregions.

Human aging

Pilot study part 1: Voxel-based analysis on the

hippocampal circuit

Voxel-based analysis (Figures 4B,C) was performed by first

transforming the non-contrast images using a diffeomorphic

registration algorithm (Avants et al., 2009) with nearest-

neighbor interpolation to an unbiased brain template created

from the 177 scans in the Aging study (Avants et al., 2009).

The GBCA-predicted maps were generated by the Healthy

Human model using the native-space non-contrast T1W

scans as the input and were subsequently used to generate

synthesized CBV maps by normalization using the mean

value among the top 10% brightest voxels within the brain

region (representing signal intensity from pure blood). These

synthesized CBV maps were then transformed into the template

using the same transformation parameters calculated from

the registration process and subsequently smoothed using a

3 mm-diameter spherical kernel. Transformed and filtered

synthesized CBV maps were analyzed using SPM12 (Ashburner

et al., 2014). Data were analyzed with a multiple regression

model, including sex as a covariate and age as the regressor.

Age-related differences were contrasted using Student’s t-test.

FreeSurfer regional segmentation was then performed on the

unbiased template image, and the hippocampal formation

mask is generated by binarizing and combining the labels

corresponding to the hippocampus and entorhinal cortex. The

age-related regression t-map was then projected onto the MNI-

152 brain template using diffeomorphic transformation with

nearest-neighbor interpolation. The result was thresholded at

p < 0.005 and corrected for multiple comparisons at the

cluster level within the hippocampal formation using a Monte-

Carlo simulation implemented in AFNI-3dClustSim (Forman

et al., 1995; Cox, 1996; Cox et al., 2017) (10,000 iterations)

to yield a corrected p < 0.05. The final corrected age-related

regression t-map was then overlaid onto the MNI-152 template

in cross-section using 3DSlicer (Fedorov et al., 2012) and also

displayed with composite-with-shading volume rendering over

semi-transparent models of the hippocampal formation.

Pilot study part 2: Region of interest analysis on

aging-related dentate gyrus region

The 177 native-space synthesized CBV scans were used to

conduct the dentate gyrus (DG) region of interest (ROI) analysis.

Multiple linear regression with sex as a covariate and age as the

regressor was conducted over the bilateral DG, as defined by

FreeSurfer parcellation. A scatter plot was drawn (Figure 4D)

with each point representing the DG-mean synthesized CBV

value after the removal of the sex effect for one participant.

Utility study: Synthesized CBV maps aging e�ects over

the entire cortex

The GBCA-predicted maps were generated in the native

space of each participant and were afterward used for CBV

quantification together with the experimentally acquired ground

truth GBCA-uptake maps using the same whole brain top

10% mean normalization. Similarly, the T1W scans were

normalized to generate a comparable counterpart. We used

T1W scans for comparison because they were the only input

to the DeepContrast model to generate GBCA-predicted maps.

The CBV (quantified from Gd-Uptake), synthesized CBV
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FIGURE 3

Quantitative evaluation of the DeepContrast in the healthy mouse and human brains. (A) DeepContrast prediction (Gd-Predicted) highly

concords with the ground truth GBCA-uptake map (Gd-Uptake) in the mouse brain. The non-contrast scans and the contrast-enhanced scans

are displayed for reference. Color bars indicate the colormap and dynamic range used in the cross-sectional brain images. (B) The similarity

between the model prediction and the ground truth, evaluated on all 6 scans in the test set using quantitative metrics, where the

non-contrast (T2W) scans are used as the performance baseline. (C) DeepContrast prediction (Gd-Predicted) highly concords with the ground

truth GBCA-uptake map (Gd-Uptake) in the cognitive normal human brain. Color bars indicate the colormap and dynamic range used in the

cross-sectional brain images. (D) The similarity between the model prediction and the ground truth, evaluated on 179 scans of cognitively

normal (CN) participants using quantitative metrics, where non-contrast (T1W) scans are used as the performance baseline. (E) DeepContrast

shows higher test-retest reliability than the experimentally acquired Gd-Uptake ground truth. For all voxel-based metrics, only the voxels within

the brains or subregions are used. SSIM is calculated on the minimum bounding box of the brains or subregions. Asterisks indicate level of

statistical significance (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001). PSNR: peak signal-to-noise ratio; SSIM, structural similarity index;

P. R, Pearson correlation coe�cient; S.R, Spearman correlation coe�cient.

(quantified from Gd-Predicted), and normalized T1W scans

were used for age-related regression in the multiple brain

regions. Multiple linear regressions with sex as a covariate

and age as the regressor were conducted using the mean

CBV/synthesized CBV/T1W values extracted from the region

across 177 participants, over selected regions (Figure 5) and

overall 72 cortical ROIs (Figure 6). The ROIs were parcellated

by FreeSurfer over the T1W scans in the native space in order to

minimize segmentation errors.

For the ROC analysis, each ROC figure contained 1,000

individual ROC curves. The average ROC was shown as a

solid black curve while the SD was shown as the shaded area.

All these individual ROC curves were computed using one

pair of ground truth (CBV) t-score maps and a prediction

candidate (synthesized CBV or non-contrast T1W) t-score

map. Both the ground truth t-score map and the prediction

candidate t-score map were binarized into 2 classes at 1,000

different binarization thresholds evenly distributed between the

minimum and the maximum value, yielding 1,000 versions for

each. Each individual ROC curve was derived using the regular

ROC computation method as described above with one of the

1,000 versions of the ground truth and all 1,000 versions of the

prediction candidate. The ROC analysis was performed using

Scikit-learn (Pedregosa et al., 2011).
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FIGURE 4

DeepContrast maps di�erential anatomical patterns of dysfunction in the hippocampal formation. (A) A three-dimensional rendering of the

bilateral hippocampal formation (left panel) consisting of the hippocampus (HC) and the entorhinal cortex (EC) and axial, sagittal, and coronal

slices from a group-wise T1-weighted MRI template cutting through the hippocampal formation (right three panels). The hippocampal

formation is displayed along the anterior-to-posterior axis. (B) A voxel-based analysis of the synthesized CBV maps of 177 individuals ranging

from 20 to 72 years of age reveals that the greatest age-related decline occurred in the body of the hippocampal circuit (color-coded by the

degree of significance). (C) A coronal slice, onto which the hippocampal formation mask is applied, reveals that age-related decline primarily

localizes to the dentate gyrus. The voxel-based analysis is conducted using a multiple regression model in SPM12 using sex as a covariate and

age as the regressor, and the age-related di�erences are contrasted using Student’s t test. Multiple comparisons are corrected for, yielding

voxel-wise p < 0.005 and cluster-wise p < 0.05 (refer to methods). (D) A scatter plot shows the association between age and mean synthesized

CBV values in the dentate gyrus after the removal of gender e�ects (βage = −6.36e-4, tage = −4.64, page = 6.85e-6). The shaded area surrounding

the regression line indicates the 95% CI. (E) A voxel-based analysis of the synthesized CBV maps of 50 Alzheimer’s disease (AD) patients

compared with 50 age-matched normal controls, each with two back-to-back scans, reveals AD-related reduction in the entorhinal

cortex (color-coded by the degree of significance). (F) A coronal slice, onto which the hippocampal formation mask is applied, reveals that

AD-related decline localizes primarily to the transentorhinal cortex. The voxel-based analysis is conducted using a multiple regression model in

SPM12 using age, sex, and participant identity as covariates and diagnostic class (i.e., cognitive normal vs. dementia) as the regressor and the

AD-related di�erence are contrasted using Student’s t-test. Multiple comparisons are corrected for, yielding voxel-wise p < 0.005 and

cluster-wise p < 0.05 (refer to methods). (G) A box plot showing individual-participant mean synthesized CBV values in the right transentorhinal

cortex indicates a significant di�erence between patients with Alzheimer’s disease and healthy controls (two sample t-test one-tailed p = 0.031).

Center line: median; box limits: upper and lower quartiles; whiskers: 1.5× interquartile range; points: outliers. HC: hippocampus; EC: entorhinal

cortex; DG: dentate gyrus; CA3: cornu Ammonis 3; CA1: cornu Ammonis 1; Sub: subiculum; Prs: presubiculum; PaS: parasubiculum.
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FIGURE 5

DeepContrast maps age-related changes in brain regions vulnerable and resistant to aging. (A) A three-dimensional rendering of the inferior

frontal gyrus (IFG), dentate gyrus (DG) and entorhinal cortex (EC) overlaid on a group-wise T1-weighted MRI template. (B) The age-related

regressions of CBV maps over these regions demonstrate the aging-vulnerability of IFG and DG and the aging-resistance of EC. (C) The

age-related regressions of synthesized CBV maps over the same regions demonstrated the same vulnerability or resistance to aging. (D) The

scatter plots of the ROI-mean CBV vs. synthesized CBV values of the 177 participants further show the consistency of the two measures.

Human AD

Pilot study part 1: Voxel-based analysis on the

hippocampal circuit

Voxel-based analysis (Figures 4E,F) was performed by first

transforming the non-contrast images using a diffeomorphic

registration algorithm (Avants et al., 2009) with nearest-

neighbor interpolation to an unbiased brain template created

from the 200 scans (i.e., 50 AD and 50 CN participants each

with 2 back-to-back repeated scans) in the pilot study. We then

ran these non-contrast scans through the DeepContrast Healthy

Human Model to generate synthesized CBV maps, which were

subsequently smoothed using a 3mm-diameter spherical kernel.

Unlike in the aging study, the application of DeepContrast

was performed after the registration process to help eliminate

major anatomical variances, since the deformations present

in the diseased population were not previously observed

by the model trained on healthy data. GBCA-predicted

scans, the direct output of the model, were used to quantify

synthesized CBV maps using the same method as described in

the Aging study above. These synthesized CBV maps, already

co-registered upon creation, were analyzed using SPM12. Data

were analyzed with a multiple regression model, including

age and sex as covariates and diagnostic class (i.e., cognitive

normal vs. dementia) as the regressor. AD-related differences

were contrasted using Student’s t-test. FreeSurfer regional

segmentation was then performed on the unbiased template

image, and the hippocampal formation mask was generated

by binarizing and combining the labels corresponding to the

hippocampus and the entorhinal cortex, while an extended

hippocampal formation mask was additionally generated to

also include the parahippocampal cortex. The AD-related

regression t-map was then projected onto the MNI-152

brain template using diffeomorphic transformation with

nearest-neighbor interpolation. The result was thresholded

at p < 0.005 and corrected for multiple comparisons at the

cluster level within the extended hippocampal formation

using a Monte-Carlo simulation implemented in AFNI-

3dClustSim (10,000 iterations) to yield a corrected p < 0.05.

The final corrected AD-related regression t-map was then

overlaid onto the MNI-152 template in cross-section using

3DSlicer and also displayed with composite-with-shading

volume rendering over semi-transparent models of the

hippocampal formation.

Pilot study part 2: Region of interest analysis on

AD-related transentorhinal cortex region

The 200 template-space synthesized CBV scans were used

to conduct the right transentorhinal cortex (TEC) ROI analysis.

A two-sample t-test was conducted over the right TEC, at the

boundary between the right entorhinal cortex (EC) and the
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FIGURE 6

DeepContrast maps age-related changes over the entire cortex. (A) Three-dimensional volume rendering of the age-related t-score maps over

the 72 FreeSurfer cortical region-of-interests (ROIs) reveals that the age-related changes in the synthesized CBV maps is similar to those in the

ground truth CBV maps, despite that the non-contrast T1W scans which serves as the input to the DeepContrast model does not share either

the same or the opposite trends. (B) A scatter plot of the age-related t-score over the 72 ROIs demonstrates that the age-related changes in

synthesized CBV are consistent to those in CBV (P.R = 0.816, S.R = 0.786) while the T1W counterparts do not (P.R = –0.131, S.R = –0.122). (C) An

analysis of the concordance to CBV t-scores by treating it as a 1,000-class classification problem reveals that age-related changes in

synthesized CBV have significant predictive power on those in CBV (sensitivity = 0.76, specificity = 0.89, AUC = 0.91) while the T1W counterparts

do not (sensitivity = 1.00, specificity = 0.04, AUC = 0.43).

right parahippocampal cortex (PHC). The region was defined

as the intersection between the EC-PHC region and a sphere

centered at the middle of the EC-PHC intersection and spanning

a diameter of the extent of the EC-PHC boundary (11 mm).

A box plot overlaid with individual data points was drawn

(Figure 4G) to indicate the group-wise difference between the

normal controls and the patients with AD.

Utility study: Synthesized CBV improves AD

classification

For the AD classification tasks with one single

input modality, the architecture “VGG-19 with batch

normalization” (VGG-19BN) (Marcel et al., 2016) was

used (Supplementary Figures S5a,b). When both T1W

and synthesized CBV were used as input, each as one

three-dimension(3D) volume, we used separate VGG

encoders for each volume and later combined the

extracted feature vectors before feeding them into fully-

connected layers. The two encoders may have different

weights (Supplementary Figure S5c). For any of these

architectures, the input is the relevant 3D scans while the

output is a continuous-valued number representing the

predicted AD-likelihood.

To evaluate the descriptiveness of the predicted AD-

likelihoods, receiver-operating characteristics (ROC) studies

were conducted to analyze the concordance between the model-

generated classification and the ground truth AD/CN labels. The

ROC curves, one for each well-trained classifier, represent the

classification performance at each potential numerical threshold

to binarize the predicted AD-likelihood score. The sensitivity

and specificity (the sum of whom peaks at the operating point),

as well as the total area under the ROC curve, demonstrate the

effectiveness of the classification method. The significance of the
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difference among these ROC curves is calculated using DeLong’s

test (DeLong et al., 1988).

Furthermore, we investigated the brain regions that had the

most contributions to the AD classification task by visualizing

the class activation maps (CAM) (Bolei et al., 2015). We used

all 131 T1W and 131 synthesized CBV scans from patients with

AD to generate an averaged CAM for each input type. We

were interested in whether or not the brain regions the classifier

found most relevant to the AD class were in fact physiologically

meaningful.

Results

DeepContrast in the mouse brain

We first designed, optimized, and trained the model on

wildtype (WT) mice brain scans (37 for training and 6 for

validation; refer toMethods section), in which we had previously

generated quantitative T2-weighted GBCA-uptake brain maps.

Similar to the previous studies (Kleesiek et al., 2019; Liu et al.,

2019; Li et al., 2021), we compared the similarities between

the GBCA-predicted maps and the GBCA-uptake ground truth

maps by performing voxel-wise analyses across the whole brain

on a test set with 6 scans (Figures 3A,B) using metrics that

measure signal quality (peak signal-to-noise ratio) and structural

similarity (structural similarity index). We further incorporated

two other metrics to represent linear (Pearson correlation

coefficient) and monotonic (Spearman correlation coefficient)

relationships across corresponding voxels. Between the maps,

the peak signal-to-noise ratio was 24.59 ± 0.60, the Pearson

correlation coefficient was 0.695 ± 0.008 (p < 0.0001), the

Spearman correlation coefficient was 0.606± 0.008 (p < 0.0001),

and the structural similarity index was 0.831± 0.008 (Figure 3B

and Table 1). This analysis shows that the DeepContrast-

generated GBCA-predicted maps from WT mice showed high

similarity to the GBCA-uptake ground truth maps generated

fromWTmice.

DeepContrast in the human brain

We adapted the DeepContrast model to human brain

MRI datasets by modifying the model network architecture,

hyper-parameters, and training strategies. First, same as in our

mouse study, we compared the similarities between the GBCA-

predicted images or maps, and the GBCA-uptake ground truth

maps by performing voxel-wise analyses across the whole brain

on a test set with 179 scans (Figures 3C,D). Between the maps,

the peak signal-to-noise ratio was 29.64 ± 0.07, the Pearson

correlation coefficient was 0.822 ± 0.002 (p < 0.0001), the

Spearman correlation coefficient was 0.625± 0.003 (p < 0.0001),

and the structural similarity index was 0.879± 0.002 (Figure 3D

and Table 1). Thus, in healthy human brains, we also see a high

similarity between the GBCA-predicted maps and that of the

GBCA-uptake ground truth maps.

In addition to the whole-brain analysis for similarity

measures, we decided to extend our comparisons to two

additional analyses. In the tissue of interest (TOI) analysis, we

compared the similarities between the maps in white matter,

gray matter, and cerebrospinal fluid (CSF). Similar to the

global results, the performances by tissue types demonstrated

the same trend: the GBCA-predicted maps were quantitatively

similar to the GBCA-uptake ground truth maps. The results are

illustrated in Figure 3D and reported in Table 1. In the region-

of-interest (ROI) analysis, we compared the similarities between

the maps in 126 distinct ROIs in the whole brain segmented

by FreeSurfer (Fischl, 2012). Among the 126 ROIs, 121 had a

significant Pearson correlation coefficients (p < 0.001) and 123

had significant Spearman correlation coefficients (p < 0.001)

(Supplementary Figure S3).

Finally, we were also interested in evaluating reproducibility

in a test-retest paradigm. We conducted a series of test-

retest reliability analyses on the GBCA-predicted maps vs.

the GBCA-uptake ground truth maps across the whole brain

on a test set with 11 repeated scan pairs (Figure 3E). For

the GBCA-predicted maps, the peak signal-to-noise ratio was

30.11 ± 0.44, the Pearson correlation coefficient was 0.919

± 0.005 (p < 0.0001), the Spearman correlation coefficient

was 0.722 ± 0.010 (p < 0.0001), and the structural similarity

index was 0.948 ± 0.002. As a comparison, for the GBCA-

uptake ground truth maps, the peak signal-to-noise ratio was

27.70 ± 0.24, the Pearson correlation coefficient was 0.815

± 0.007 (p < 0.0001), the Spearman correlation coefficient

was 0.415 ± 0.017 (p < 0.0001), and the structural similarity

index was 0.832 ± 0.007. Among all the analyses, the test-

retest reliabilities of the GBCA-predictedmaps were consistently

higher than the test-retest reliabilities of the GBCA-uptake

ground truth maps (p < 0.0001) (Figure 3E). We also performed

the TOI analysis, and the results are illustrated in Figure 3E

and reported in Table 1. Among all metrics in all tissue types,

the test-retest reliabilities of the GBCA-predicted maps were

consistently higher than the test-retest reliabilities of the GBCA-

uptake ground truth maps (p < 0.0001) (Figure 3E).

DeepContrast visualizes functional
lesions in aging and Alzheimer’s disease
brains

We generated GBCA-predicted maps from non-contrast

T1-weighted MRI scans with DeepContrast, and subsequently

quantified synthesized CBVmaps with a sub-millimeter in-plane

resolution of 0.68×0.68 mm in the coronal planes and slice

thickness of 3 mm (refer to Methods). Then, we conducted
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TABLE 1 Quantitative evaluations of DeepContrast models.

Model Evaluation Region Data PSNR P.R S.R SSIM

Healthy Similarity Whole Brain Gd-Uptake vs. T2W 22.16± 0.59 –0.072± 0.032 0.074± 0.013 0.707± 0.007

Mouse Gd-Uptake vs. Gd-Predicted 24.59± 0.60 0.695± 0.008 0.606± 0.008 0.831± 0.008

Healthy Similarity Whole Brain Gd-Uptake vs. T1W 15.40± 0.09 –0.194± 0.003 –0.323± 0.005 0.446± 0.002

Human Gd-Uptake vs. Gd-Predicted 29.64± 0.07 0.822± 0.002 0.625± 0.003 0.879± 0.002

White Matter Gd-Uptake vs. T1W 15.40± 0.09 –0.194± 0.003 –0.323± 0.005 0.446± 0.002

Gd-Uptake vs. Gd-Predicted 35.15± 0.09 0.633± 0.006 0.437± 0.002 0.969± 0.001

Gray Matter Gd-Uptake vs. T1W 14.72± 0.06 –0.029± 0.002 –0.039± 0.003 0.462± 0.001

Gd-Uptake vs. Gd-Predicted 30.18± 0.07 0.807± 0.004 0.510± 0.003 0.946± 0.001

CSF Gd-Uptake vs. T1W 20.65± 0.07 0.124± 0.003 0.120± 0.004 0.802± 0.003

Gd-Uptake vs. Gd-Predicted 25.47± 0.08 0.728± 0.004 0.604± 0.003 0.936± 0.001

Test-Retest Whole Brain Gd-Uptake of two repeated acquisitions 27.70± 0.24 0.815± 0.007 0.415± 0.017 0.832± 0.007

Reliability Gd-Predicted of two repeated acquisitions 30.11± 0.44 0.919± 0.005 0.722± 0.010 0.948± 0.002

White Matter Gd-Uptake of two repeated acquisitions 31.18± 0.18 0.713± 0.015 0.129± 0.008 0.933± 0.004

Gd-Predicted of two repeated acquisitions 35.14± 0.40 0.899± 0.006 0.368± 0.014 0.986± 0.001

Gray Matter Gd-Uptake of two repeated acquisitions 27.89± 0.32 0.844± 0.008 0.327± 0.020 0.907± 0.005

Gd-Predicted of two repeated acquisitions 30.42± 0.44 0.937± 0.004 0.596± 0.013 0.976± 0.001

CSF Gd-Uptake of two repeated acquisitions 24.04± 0.27 0.762± 0.014 0.585± 0.019 0.907± 0.004

Gd-Predicted of two repeated acquisitions 26.32± 0.48 0.882± 0.009 0.800± 0.008 0.967± 0.001

Evaluations varied depending on the aspects being assessed for each model. All metrics were reported in the form of mean± standard error of the mean (SEM). PSNR, peak signal-to-noise

ratio; P.R, Pearson correlation coefficient; S.R, Spearman correlation coefficient; SSIM, structural similarity index.

voxel-based analyses (VBA) and ROI-based analyses on the

synthesized CBV maps to identify sites of dysfunctions in

normal aging and Alzheimer’s disease (AD).

Normal aging

The first study we conducted aimed to validate whether

DeepContrast can capture the subtle aging effects on

basal metabolism. First, we focused on the hippocampal

circuit (Figure 4A). As shown in Figures 4B,C, the age-related

decline in our DeepContrast-generated synthesized CBV maps

localized primarily to the dentate gyrus (DG). This result

replicates prior studies (Small et al., 2002, 2004; Chawla and

Barnes, 2007; Moreno et al., 2007; Brickman et al., 2014; Feng

et al., 2020a), where the age-related decline in brain metabolism

in the hippocampal formation has been shown to occur

primarily in the DG. In the complementary ROI analysis of the

DG, the synthesized CBV values showed a linear decline with

age (βage =−6.36e-4, tage =−4.64, page = 6.85e-6) (Figure 4D).

We also analyzed two other brain regions, namely the

inferior frontal gyrus (IFG), found to be more vulnerable to

aging (Shen et al., 2012; Hoffman and Morcom, 2018; Feng

et al., 2020a,b), and the entorhinal cortex (EC), found to be

less vulnerable to aging (Gómez-Isla et al., 1996; Small et al.,

2004, 2011; Feng et al., 2020a). The synthesized CBV maps

demonstrated the same age-related trends as the ground truth

CBV over these regions (Figure 5).

Finally, we extended the analysis to the entire cortex and

found that the synthesized CBV maps reflected similar

age-related changes as the ground truth CBV overall

cortical ROIs (Figure 6). The multi-class Receiver Operative

Characteristics (ROC) curve, which represented the level of

concordance between synthesized CBV and ground truth CBV,

reached a sensitivity of 0.76 and a specificity of 0.89 at the

operating point, and the area-under-the-curve (AUC) was 0.91

(Figure 6).

Alzheimer’s disease

The second study we conducted aimed to validate

whether DeepContrast could capture the regional vulnerability

in patients with Alzheimer’s disease dementia, where we

utilized publicly available data from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) (Mueller et al., 2005). Similar

to the above approach, we performed a VBA analysis over

the hippocampal circuit (Figure 4A). Replicating previous

findings (Braak and Braak, 1996; Brickman et al., 2011,

2014; Small et al., 2011; Pavlopoulos et al., 2013; Schobel

et al., 2013; Khan et al., 2014; Sperling et al., 2014; Coughlan

et al., 2018; Provenzano et al., 2020; Simoes et al., 2021), the

Alzheimer’s disease-related decline in the synthesized CBV

maps primarily localized to a region termed the transentorhinal

cortex (TEC) (Figures 4E,F). In the complementary ROI analysis

of the right TEC, the synthesized CBV values were significantly
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lower (p = 0.031) in patients with AD compared to the healthy

controls (Figure 4G).

Next, we trained VGG-like models (Simon et al., 2016) to

perform participant-level AD classification on a class-balanced

and age-matched dataset with more than 2,500 scans. We

tested the models on the same stand-alone set of 131 AD

scans and 129 CN scans. Compared to using the T1W MRI

data alone, when we included the synthesized CBV maps

generated using DeepContrast as the input to the model,

the classification accuracy increased significantly (Figure 7A).

However, the specific approach to combining the two modalities

affected the performances (Table 2). The best fit that we found

was to assign a designated encoder for each modality without

weight sharing between them.

Finally, we used class activation maps to identify specific

brain regions that influenced the best performing classifier

when it determined that a person has AD (Figure 7B). The

most highly contributing structural information comes from

the temporal lobe, while the most highly informative artificial

functional information was observed to come from the parieto-

occipital lobe.

Discussion

Gadolinium-based contrast agents’s utility for MRI can be

organized around two primary pathophysiologies. The first is a

breakdown of the blood-brain barrier that often accompanies

many structural lesions, and, in that case, GBCA extravasates

into the parenchyma and enhances lesion detection (Garcia

et al., 2020). The second is alterations in neuronal metabolism,

typical of most functional disorders, in which case intravascular

GBCA is used to quantify regional CBV, a cerebrovascular

variable tightly coupled to energy metabolism (Belliveau, 1991;

Gonz et al., 1995; Østergaard et al., 1998; Sugahara et al.,

1998; Aronen et al., 2000). As proof-of-principle, we optimized

models for our investigation of the second scenario. We

have demonstrated that DeepContrast can extract GBCA-like

contrast information from non-contrast T1W structural MRI

scans to quantify regional CBV. As GBCA’s utility can be

largely divided into two pathophysiologies, we anticipate that

future large-scale studies across a range of diseases might

lead to two generalizable models–one for structural disorders

that are more likely to impact the integrity of the blood-

brain barrier, and another for functional lesions that alters

brain metabolism, although GBCA contrast is much subtler for

functional compared to structural lesions.

DeepContrast’s utility can be organized according to its

broad applications. The first is for research. There is an

increasing number of brain MRI databases, such as ADNI,

whose primary purpose is brain imaging and disease research.

Standard T1-weighted MRI scans are among the most common

protocols across all of these datasets, typically acquired for

mapping regional structural differences, such as regional volume

or cortical thickness. DeepContrast can be retroactively applied

to these data and can be used to generate synthetic functional

maps, significantly expanding pathophysiological insight that

can be derived across a range of disorders. For example, by

using the DeepContrast model, we have demonstrated that a

large-scale synthetic functional dataset could be generated and

further used to provide superior AD classification. For single

input modalities, the AD classifier trained on the synthesized

CBV functional images provided improved AD identification

when compared with the AD classifier trained on T1W scans.

The improvement was further amplified when both modalities

were provided, which allowed the model to take advantage

of both structural and functional information. Among all

the candidate models, the model with two separate encoders

of different weights outperforms the others. Training each

encoder on structural and synthesize functional CBV MRI

scans independently allowed themost efficient feature extraction

and yielded the best classification performances. The class

activation map for the best-performing model revealed an

interesting pattern of collaboration between the two encoders,

each corresponding to a single input modality. The medial

temporal lobe provides the most crucial structural information

as reflected by the structural-encoder. This result is consistent

with previous studies indicating that medial temporal atrophy

is an indicative sign of AD and qualitative assessments of the

region could be used to predict patients at risk of AD (Bradley

et al., 1984; Korf et al., 2004). On the other hand, activation

of the parietal and occipital lobes was representative of regions

experiencing the most functional changes in the AD brain in

accordance with the functional-encoder, which is consistent with

the findings such as decreased resting state neural activity (Yong

et al., 2007; Li et al., 2016) and glucose utilization (Reiman et al.,

1996) in the parieto-occipital cortex.

DeepContrast’s second application is for patient care.

For patient populations with functional lesions, those with

neuropsychiatric and neurodegenerative disorders, a T1-

weighted scan may be ordered as part of standard clinical

practice, to exclude structural abnormalities. For these patients,

deriving CBV mapsvia DeepContrast potentially obviates

the need for ordering other more invasive, burdensome,

and expensive neuroimaging studies for mapping metabolic

dysfunction.

This study has several limitations. First, our study focused

on the identification of functional abnormalities with the

synthesized CBV derived from non-contrast T1W structural

MRI without the need for GBCAs. Detecting structural brain

lesions such as those found in cancer, infections, or bleeding are

still the major utility of GBCAs. Our DeepContrast framework

is sufficiently general that it can be easily extended to the

detection of structural brain lesions with T1W MRIs, but

future study should be done to evaluate its performance in

these conditions. Second, we acknowledge the retrospective
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FIGURE 7

DeepContrast-generated synthesized CBV improves AD classification and provides spatially-meaningful information. (A) Receiver Operating

Characteristics curves for the classification models using T1W structural data only (black), using synthesized CBV functional data only (blue), or

using both in combination (red). p-values were calculated using DeLong’s test. (B) The class-average Class Activation Maps of the

best-performing model, calculated from 131 AD scans in the standalone test set.

TABLE 2 Performances of the five variants of the AD-classification network.

Input Model Sensitivity Specificity ROC AUC Accuracy @ Operating Max accuracy

T1W Regular 0.885 0.860 0.905 0.869 0.873

SynCBV Regular 0.885 0.876 0.919 0.877 0.881

T1W+SynCBV Dual-channel 0.885 0.853 0.936 0.865 0.869

T1W+SynCBV Dual-encoder w/ identical weights 0.802 0.806 0.875 0.800 0.804

T1W+SynCBV Dual-encoder w/ different weights 0.901 0.876 0.942 0.885 0.888

Sensitivity and specificity are calculated at the operating point. Accuracy at the operating point and the maximum accuracy achievable by changing the binarization threshold are

respectively calculated for each candidate. ROC AUC, area under the receiver-operating characteristics curve; SynCBV, synthesized CBV. Best result(s) in each metric are highlighted

in bold.

nature of the study and the absence of inclusion of MRI

data from multiple sites and acquisition protocols. The distinct

quantitative GBCA dataset used to train our DeepContrast

model was collected over a timeframe of around 20 years

at Columbia University using the equivalent protocol on

multiple scanners. The pre- and post-GBCA images used to

derive the CBV maps shared identical imaging settings, which

help reduce the inter and intrasubject variability between

the non-contrast T1W pre-GBCA image and the quantitative

GBCA enhancement and benefit the training of our model.

Future study could address how the use of heterogeneous

data from various cohorts, sites, scanners, and acquisition

protocols might improve the model performance to produce

more stable and generalizable results. This study also shares

the limitations of other studies of GBCA contrast synthesizing

with deep learning. Deep convolutional neural networks have

performed remarkably well on these tasks; however, these

networks are heavily reliant on big data to avoid overfitting.

Unfortunately, medical image analysis applications normally

do not have access to big data. Data augmentation, a data-

space solution to the problem, of limited data can be applied

in future work to enhance the sample size, enrich the data

variance and improve the data quality of the training dataset

such that better models can be built from them. Finally, in
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light of the overall promising performance on the task, it is

important to consider our work as a pioneer proof-of-concept

study, and future work should be done to further improve

its performance to reach the level for clinical purposes. For

instance, the proposed CNN model is trained from scratch,

but applying and fine-tuning a pre-trained model on our

data through transfer learning could further improve model

performance. Future study could also improve our model

through multi-task learning. While we did achieve state-of-

the-art performance by being laser-focused on our single task,

synthesizing CBV from non-contrast T1W structural MRI, we

ignored information that might help us achieve even better

metrics. Specifically, this information could come from training

MRI signals for related tasks, such as image reconstruction, brain

tissue segmentation, or predicting demographic information. By

sharing representations between related tasks in a multi-task

learning framework, it could enable our model to generalize

better on the original task.

In conclusion, by using quantitative GBCA datasets from

both mice and humans, we demonstrated that a deep learning

model can, in principle, generate GBCA-equivalent information

from a single structural MRI scan for the estimation of regional

CBV, and we successfully applied our DeepContrast model to

both an in-house aging dataset and a publicly available ADNI

dataset from Alzheimer’s patients and age-matched controls.
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SUPPLEMENTARY FIGURE S1

Details of the Healthy Mouse Model (Network 1 in Figure 2). This model

is implemented with a 2D five-layered Residual Attention U-Net

architecture. The encoding path (blue blocks in the left half of the

architecture) condenses the image dimensions and enriches the feature

dimension, shrinking the image size from 208×208 pixels to 13×13

pixels while extracting 1,024 channels of features. The decoding path

(red blocks in the right half of the architecture) expands these high-level

features and returns back a single slice of the predicted image with

208×208 pixels.

SUPPLEMENTARY FIGURE S2

Details of the Healthy Human Model (Network 2 in Figure 2). This model

is implemented with a 2D six-layered Residual Attention U-Net

architecture. The encoding path (blue blocks in the left half of the

architecture) condenses the image dimensions and enriches the feature

dimension, shrinking the image size from 352×352 pixels to 11×11

pixels while extracting 2,048 channels of features. The decoding path

(red blocks in the right half of the architecture) expands these high-level

features and returns back a single slice of the predicted image with

352×352 pixels.

SUPPLEMENTARY FIGURE S3

Correlation between the GBCA-uptake map and GBCA-predicted map

over the entire brain. The Pearson (top) and Spearman (bottom)

correlation coe�cients are computed for each of the 126 anatomical

ROIs defined by FreeSurfer between the array of ROI-mean Gd-Uptake

values and the array of ROI-mean Gd-Predicted values extracted from

the 177 participants with successful FreeSurfer parcellation. The analysis

demonstrates significant correlation between the

DeepContrast-predicted contrast and the corresponding ground truth

across a wide range of brain regions (121 ROIs with p < 0.001 for

Pearson correlation coe�cient and 123 ROIs with p < 0.001 for

Spearman correlation coe�cient).

SUPPLEMENTARY FIGURE S4

Details of MRI processing pipeline and partition of the Alzheimer’s

Disease (AD) classification dataset. (a) Data processing pipeline to

generate the input of di�erent AD classification deep learning models.

The preprocessing of structural T1W MR data is necessary to remove

unwanted artifacts and transform the data into a standard version before

feeding them into the models. For each MRI structural, we process the

T1W 3D volume through a standardized pipeline: (1) whole brain a�ne

registration to MNI152 template space and other processing detailed in

a prior study (Feng et al., 2018); (2) whole brain rigid registration to

MNI152 template space; (3) histogram matching to the DeepContrast

CU T1W MRI; (4) whole brain di�eomorphic registration to standard CU

template; (5) generating the synthesized CBV maps; (6) up-sampling the

synthesized CBV maps to 1-mm isotropic resolution. (b) Left: Age

distributions of the participants in the entire dataset (top) and the subset

after propensity-score matching of age (bottom). Right: Age

distributions of the participants assigned to the train, validation, and test

dataset. VS, voxel size; AD, Alzheimer’s diseased; CN, cognitive

normal.

SUPPLEMENTARY FIGURE S5

Details of the three candidates of AD-classification networks (Networks

used in Figure 7). (a) Proposed Model 1. Modified 3D VGG-19 network

with batch normalization uses T1W MRI scans as the model input. This

model aims to perform the AD classification based on structure T1W

MRI scans. (b) Proposed Model 2. Modified 3D VGG-19 network with

batch normalization uses synthesized CBV maps as the model input.

This model aims to realize the AD classification based on functional MRI

maps. (c) Proposed model 3. Modified VGG-19 network with double

encoding paths uses T1W MRI scans and the synthesized CBV maps as

the model input. Separate encoders in the model have the same

structure but di�erent weights. This could help improve the structure

and functional information fusion and classification performance. The

red arrow represents the generation of synthesized CBV from T1W MRI

scans using DeepContrast.

References

Aronen, H. J., Pardo, F. S., Kennedy, D. N., Belliveau, J. W., Packard, S. D.,
Hsu, D. W., et al. (2000). High microvascular blood volume is associated with high
glucose uptake and tumor angiogenesis in human gliomas. Clin. Cancer Res. 6,
2189–2200. Available online at: https://aacrjournals.org/clincancerres/article/6/6/
2189/288412/High-Microvascular-Blood-Volume-Is-Associated-with

Ashburner, J., Barnes, G., Chen, C. C., Daunizeau, J., Flandin, G., Friston, K.,
et al. (2014). Spm12 Manual. London: Wellcome Trust Centre for Neuroimaging.

Avants, B. B., and Tustison, N., and Song, G. (2009). Advanced normalization
tools (ants). Insight J. 2, 1–35. doi: 10.54294/uvnhin

Frontiers in AgingNeuroscience 17 frontiersin.org

https://doi.org/10.3389/fnagi.2022.923673
www.fnih.org
https://www.frontiersin.org/articles/10.3389/fnagi.2022.923673/full#supplementary-material
https://aacrjournals.org/clincancerres/article/6/6/2189/288412/High-Microvascular-Blood-Volume-Is-Associated-with
https://aacrjournals.org/clincancerres/article/6/6/2189/288412/High-Microvascular-Blood-Volume-Is-Associated-with
https://doi.org/10.54294/uvnhin
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnagi.2022.923673

Barron, J. T. (2019). “A General and adaptive robust loss function,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(Long Beach, CA: IEEE), 4331–4339.

Belliveau, J., et al. (1991). Functional mapping of the human visual cortex by
magnetic resonance imaging. Science 254, 716–719. doi: 10.1126/science.1948051

Bolei, A., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A. (2015).
Learning deep features for discriminative localization. arXiv:1512, 04150.
doi: 10.48550/arXiv.1512.04150

Borges, A., López-Larrubia, P., Marques, J., and Cerdan, S. (2012). Mr imaging
features of high-grade gliomas in murine models: how they compare with
human disease, reflect tumor biology, and play a role in preclinical trials. Am. J.
Neuroradiol. 33, 24–36. doi: 10.3174/ajnr.A2959

Braak, H., and Braak, E. (1996). Evolution of the neuropathology of alzheimer’s
disease. Acta Neurol Scand. 94, 3–12. doi: 10.1111/j.1600-0404.1996.tb05866.x

Bradley, C., Van Hoesen, G. W., Damasio, A. R., and Barnes, C. L. (1984).
Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation.
Science 225, 1168–1170. doi: 10.1126/science.6474172

Brickman, A. M., Khan, U. A., Provenzano, F. A., Yeung, L. K., Suzuki,
W., Schroeter, H., et al. (2014). Enhancing dentate gyrus function with dietary
flavanols improves cognition in older adults. Nat. Neurosci. 17, 1798–1803.
doi: 10.1038/nn.3850

Brickman, A.M., and Stern, Y., and Small, S. A. (2011). Hippocampal subregions
differentially associate with standardized memory tests.Hippocampus 21, 923–928.
doi: 10.1002/hipo.20840

Chawla, M. K., and Barnes, C. A. (2007). Hippocampal granule cells in normal
aging: insights from electrophysiological and functional imaging experiments.
Prog. Brain Res. 163, 661–821. doi: 10.1016/S0079-6123(07)63036-2

Chou, N., Wu, J., Bingren, J. B., and Qiu, A., and Chuang, K.-H. (2011). Robust
automatic rodent brain extraction using 3-d pulse-coupled neural networks (pcnn).
IEEE Trans. Image Process. 20, 2554–2564. doi: 10.1109/TIP.2011.2126587

Coughlan, G., Laczó, J., Hort, J., Minihane, A.-M., and Hornberger, M. (2018).
Spatial navigation deficits–overlooked cognitive marker for preclinical alzheimer
disease? Nat. Rev. Neurol. 14, 496–506. doi: 10.1038/s41582-018-0031-x

Cox, I. J., and Roy, S., and Hingorani, S. L. (1995). “Dynamic histogram warping
of image pairs for constant image brightness,” in Proceedings., International
Conference on Image Processing, Vol. 2 (Washington, DC: IEEE), 366–369.

Cox, R. W. (1996). Afni: software for analysis and visualization of
functional magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162–173.
doi: 10.1006/cbmr.1996.0014

Cox, R. W., Chen, G., Glen, D. R., and Reynolds, R. C., and Taylor, P. A. (2017).
Fmri clustering in afni: false-positive rates redux. Brain Connect. 7, 152–171.
doi: 10.1089/brain.2016.0475

DeLong, D., DeLong, D. M., and Clarke-Pearson, D. L. (1988). Comparing
the areas under two or more correlated receiver operating characteristic curves:
a nonparametric approach. Biometrics 33, 837–845. doi: 10.2307/2531595

Dillman, J. R., and Davenport, M. S. (2020). Gadolinium retention–5 years later.
Pediatr. Radiol. 50, 166–167. doi: 10.1007/s00247-019-04540-z

Dugas-Phocion, G., Ballester, M. A. G., Malandain, G., Lebrun, C., and Ayache,
N. (2004). “Improved EM-based tissue segmentation and partial volume effect
quantification in multi-sequence brain MRI,” in International Conference on
Medical Image Computing and Computer-Assisted Intervention Berlin.

Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., J. Fillion-Robin,
C., Pujol, S., et al. (2012). 3D slicer as an image computing platform
for the quantitative imaging network. Magn. Reson. Imaging 30, 1323–1341.
doi: 10.1016/j.mri.2012.05.001

Feng, X., Guo, J., Sigmon, H. C., Sloan, R. P., Brickman, A.M., Provenzano, F. A.,
et al. (2020a). Brain regions vulnerable and resistant to aging without alzheimer’s
disease. PLoS ONE 15, e0234255. doi: 10.1371/journal.pone.0234255

Feng, X., Lipton, Z. C., Yang, J., Small, S. A., Provenzano, F. A., Alzheimer’s
Disease Neuroimaging Initiative, et al. (2020b). Estimating brain age based on
a uniform healthy population with deep learning and structural mri. Neurobiol.
Aging 91, 15–25. doi: 10.1016/j.neurobiolaging.2020.02.009

Feng, X., Yang, J., Lipton, Z. C., Small, S. A., and Provenzano, F. A. (2018).
Deep learning on MRI affirms the prominence of the hippocampal formation in
Alzheimer’s disease classification. bioRxiv 456277. doi: 10.1101/456277

Fischl, B. (2012). Freesurfer. Neuroimage 62, 774–781.
doi: 10.1016/j.neuroimage.2012.01.021

Flacke, S., Urbach, H., Keller, E., Träber, F., Hartmann, A., Folkers, P. J.,
et al. (2000). Middle cerebral artery (MCA) susceptibility sign at susceptibility-
based perfusionMR imaging: clinical importance and comparison with hyperdense

MCA sign at CT. Radiology 215, 476–482. doi: 10.1148/radiology.215.2.r00ma
09476

Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy,W. F., Mintun,M. A., andNoll,
D. C. (1995). Improved assessment of significant activation in functional magnetic
resonance imaging (fmri): use of a cluster-size threshold. Magn. Reson. Med. 33,
636–647. doi: 10.1002/mrm.1910330508

Garcia, G. C., Bockel, S., Majer, M., and Ammari, S., and Smits, M. (2020).
“Imaging of brain metastases: diagnosis and monitoring,” in Central Nervous
System Metastases (Springer), 145–158.

Gómez-Isla, T., Price, J. L., McKeel Jr, D. W., Morris, J. C., Growdon,
J. H., and Hyman, B. T. (1996). Profound loss of layer ii entorhinal cortex
neurons occurs in very mild Alzheimer’s disease. J. Neurosci. 16, 4491–4500.
doi: 10.1523/JNEUROSCI.16-14-04491.1996

Gong, E., Pauly, J. M., and Wintermark, M., and Zaharchuk, G. (2018). Deep
learning enables reduced gadolinium dose for contrast-enhanced brain mri. J.
Magn. Reson. Imaging 48, 330–340. doi: 10.1002/jmri.25970

Gonz, R., Fischman, A. J., Guimaraes, A. R., Carr, C. A., Stern, C. E., Halpern,
E. F., et al. (1995). Functional mr in the evaluation of dementia: correlation of
abnormal dynamic cerebral blood volume measurements with changes in cerebral
metabolism on positron emission tomography with fludeoxyglucose f 18. Am. J.
Neuroradiol. 16, 1763–1770.

Guo, B. J., and Yang, Z. L., and Zhang, L. J. (2018). Gadolinium deposition in
brain: current scientific evidence and future perspectives. Front. Mol. Neurosci. 11,
335. doi: 10.3389/fnmol.2018.00335

Hasgall, P. A., Gennaro, D., i., Baumgartner, F., Neufeld, C., Lloyd, E., et al.
(2022). IT’IS Database for thermal and electromagnetic parameters of biological
tissues. Version 4, 1.

He, K., Zhang, X., and Ren, S., and Sun, J. (2016). “Deep residual learning for
image recognition,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (Las Vegas, NV: IEEE), 770–778.

Hoffman, P., and Morcom, A. M. (2018). Age-related changes in the
neural networks supporting semantic cognition: a meta-analysis of 47
functional neuroimaging studies. Neurosci. Biobehav. Rev. 84, 134–150.
doi: 10.1016/j.neubiorev.2017.11.010

Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., and Smith,
S. M. (2012). FSL.Neuroimage 62, 782–790. doi: 10.1016/j.neuroimage.2011.09.015

Khan, U. A., Liu, L., Provenzano, F. A., Berman, D. E., Profaci, C. P., Sloan,
R., et al. (2014). Molecular drivers and cortical spread of lateral entorhinal
cortex dysfunction in preclinical Alzheimer’s disease. Nat. Neurosci. 17, 304–311.
doi: 10.1038/nn.3606

Kleesiek, J., Morshuis, J. N., Isensee, F., Deike-Hofmann, K., Paech,
D., Kickingereder, P., et al. (2019). Can virtual contrast enhancement in
brain mri replace gadolinium?: a feasibility study. Invest Radiol. 54, 653–660.
doi: 10.1097/RLI.0000000000000583

Korf, P., Wahlund, L. O., Visser, P. J., and Scheltens, P. (2004). Medial
temporal lobe atrophy on MRI predicts dementia in patients with mild cognitive
impairment. Neurology 63, 94–100. doi: 10.1212/01.WNL.0000133114.92694.93

Lewandowski, N. M., Bordelon, Y., Brickman, A. M., Angulo, S., Khan, U.,
Muraskin, J., et al. (2013). Regional vulnerability in huntington’s disease: fmri-
guided molecular analysis in patients and a mouse model of disease. Neurobiol.
Dis. 52, 84–93. doi: 10.1016/j.nbd.2012.11.014

Li, H., Wang, X., Li, Y., Sun, Y., Sheng, C., Li, H., et al. (2016).
Abnormal resting-state functional connectivity strength in mild cognitive
impairment and its conversion to Alzheimer’s disease.Neural Plast. 2016, 4680972.
doi: 10.1155/2016/4680972

Li, W., Xiao, H., Li, T., Ren, G., Lam, S., Teng, X., et al. (2021). A
multimodality-guided synergistic neural network (MMgSN-Net) was developed to
leverage complementary information between contrast-free T1-weighted and T2-
weighted MRI for vceT1w MRI synthesis.. Int. J. Radiat. Oncol. Biol. Phys. 112,
1033–1044.doi: 10.1016/j.ijrobp.2021.11.007

Liu, J., Gong, E., and Christen, T., and Zaharchuk, G. (2019). “Contrast-free
mri contrast enhancement with deep attention generative adversarial network,” in
ISMRM 27th Annual Meeting and ExhibitionMontréal, QC.

Lohrke, J., Frenzel, T., Endrikat, J., Alves, F. C., Grist, T. M., Law, M., et al.
(2016). 25 years of contrast-enhanced mri: developments, current challenges and
future perspectives. Adv. Ther. 33, 1–28. doi: 10.1007/s12325-015-0275-4

Marcel, J., Rodner, E., and Denzler, J. (2016). ImageNet pre-trained models with
batch normalization. arXiv:1612, 01452. doi: 10.48550/arXiv.1612.01452

Moreno, H., Hua, F., and Brown, T., and Small, S. (2006). Longitudinal
mapping of mouse cerebral blood volume with mri. NMR Biomed. 19, 535–543.
doi: 10.1002/nbm.1022

Frontiers in AgingNeuroscience 18 frontiersin.org

https://doi.org/10.3389/fnagi.2022.923673
https://doi.org/10.1126/science.1948051
https://doi.org/10.48550/arXiv.1512.04150
https://doi.org/10.3174/ajnr.A2959
https://doi.org/10.1111/j.1600-0404.1996.tb05866.x
https://doi.org/10.1126/science.6474172
https://doi.org/10.1038/nn.3850
https://doi.org/10.1002/hipo.20840
https://doi.org/10.1016/S0079-6123(07)63036-2
https://doi.org/10.1109/TIP.2011.2126587
https://doi.org/10.1038/s41582-018-0031-x
https://doi.org/10.1006/cbmr.1996.0014
https://doi.org/10.1089/brain.2016.0475
https://doi.org/10.2307/2531595
https://doi.org/10.1007/s00247-019-04540-z
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.1371/journal.pone.0234255
https://doi.org/10.1016/j.neurobiolaging.2020.02.009
https://doi.org/10.1101/456277
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1148/radiology.215.2.r00ma09476
https://doi.org/10.1002/mrm.1910330508
https://doi.org/10.1523/JNEUROSCI.16-14-04491.1996
https://doi.org/10.1002/jmri.25970
https://doi.org/10.3389/fnmol.2018.00335
https://doi.org/10.1016/j.neubiorev.2017.11.010
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1038/nn.3606
https://doi.org/10.1097/RLI.0000000000000583
https://doi.org/10.1212/01.WNL.0000133114.92694.93
https://doi.org/10.1016/j.nbd.2012.11.014
https://doi.org/10.1155/2016/4680972
https://doi.org/10.1016/j.ijrobp.2021.11.007
https://doi.org/10.1007/s12325-015-0275-4
https://doi.org/10.48550/arXiv.1612.01452
https://doi.org/10.1002/nbm.1022
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnagi.2022.923673

Moreno, H., Wu, W. E., Lee, T., Brickman, A., Mayeux, R., Brown, T. R., et al.
(2007). Imaging the aβ-related neurotoxicity of Alzheimer disease. Arch. Neurol.
64, 1467–1477. doi: 10.1001/archneur.64.10.1467

Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C., Jagust, W.,
et al. (2005). The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin.
15, 869–877. doi: 10.1016/j.nic.2005.09.008

Oktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich, M., Misawa, K., et al.
(2018). Attention u-net: Learning where to look for the pancreas. arXiv preprint
arXiv:1804, 03999. doi: 10.48550/arXiv.1804.03999

Ostergaard, L., Smith, D. F., Vestergaard-Poulsen, P., Hansen, S. B., Gee, A.
D., Gjedde, A., et al. (1998). Absolute cerebral blood flow and blood volume
measured by magnetic resonance imaging bolus tracking: comparison with
positron emission tomography values. J. Cereb. Blood Flow Metabol. 18, 425–432.
doi: 10.1097/00004647-199804000-00011

Pavlopoulos, E., Jones, S., Kosmidis, S., Close, M., Kim, C., Kovalerchik,
O., et al. (2013). Molecular mechanism for age-related memory loss: the
histone-binding protein rbap48. Sci. Transl. Med. 5, 200ra.115–200ra115.
doi: 10.1126/scitranslmed.3006373

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
et al. (2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12,
2825–2830. Available online at: https://dl.acm.org/doi/10.5555/1953048.2078195
doi: 10.48550/arXiv.1201.0490

Preetha, C. J., Meredig, H., Brugnara, G., Mahmutoglu, M. A., Foltyn,
M., Isensee, F., et al. (2021). Deep-learning-based synthesis of post-contrast
T1-weighted MRI for tumour response assessment in neuro-oncology: a
multicentre, retrospective cohort study. Lancet Digital Health 3, e784-e794.
doi: 10.1016/S2589-7500(21)00205-3

Provenzano, F. A., Guo, J., Wall, M. M., Feng, X., Sigmon, H. C., Brucato,
G., et al. (2020). Hippocampal pathology in clinical high-risk patients and the
onset of schizophrenia. Biol. Psychiatry 87, 234–242. doi: 10.1016/j.biopsych.2019.
09.022

Quattrocchi, C. C., and van der Molen, A. J. (2017). Gadolinium retention in the
body and brain: is it time for an international joint research effort?. Radiology 282,
12–16. doi: 10.1148/radiol.2016161626

Ramalho, M., Ramalho, J., and Burke, L. M., and Semelka, R. C. (2017).
Gadolinium retention and toxicity–an update. Adv. Chronic Kidney Dis. 24,
138–146. doi: 10.1053/j.ackd.2017.03.004

Reiman, E. M., Caselli, R. J., Yun, L. S., Chen, K., Bandy, D., Minoshima, S.,
et al. (1996). Preclinical evidence of Alzheimer’s disease in persons homozygous
for the ε4 allele for apolipoprotein E. N. Engl. J. Med. 334, 752–758.
doi: 10.1056/NEJM199603213341202

Ronneberger, O., and Fischer, P., and Brox, T. (2015). “U-net: Convolutional
networks for biomedical image segmentation,” in International Conference on
Medical Image Computing and Computer-Assisted Intervention (Munich: Springer),
234–241.

Rovira, A., Orellana, P., Alvarez-Sabín, J., Arenillas, J. F., Aymerich, X.,
Grivé, E., et al. (2004). Hyperacute ischemic stroke: middle cerebral artery
susceptibility sign at echo-planar gradient-echo MR imaging. Radiology 232,
466–473. doi: 10.1148/radiol.2322030273

Schobel, S. A., Chaudhury, N. H., Khan, U. A., Paniagua, B., Styner, M. A.,
Asllani, I., Inbar, B. P., et al. (2013). Imaging patients with psychosis and a

mouse model establishes a spreading pattern of hippocampal dysfunction and
implicates glutamate as a driver. Neuron 78, 81–93. doi: 10.1016/j.neuron.2013.
02.011

Shen, Q., and Duong, T. Q. (2016). Magnetic resonance imaging
of cerebral blood flow in animal stroke models. Brain Circ. 2, 20.
doi: 10.4103/2394-8108.178544

Shen, X., Liu, H., Hu, Z., andHu,H., and Shi, P. (2012). The relationship between
cerebral glucose metabolism and age: report of a large brain pet data set. PLoS ONE
7, e51517. doi: 10.1371/journal.pone.0051517

Simoes, S., Guo, J., Buitrago, L., Qureshi, Y. H., Feng, X., Kothiya,
M., et al. (2021). Alzheimer’s vulnerable brain region relies on a distinct
retromer core dedicated to endosomal recycling. Cell Rep. 37, 110182.
doi: 10.1016/j.celrep.2021.110182

Simon, M., Rodner, E., and Denzler, J. (2016). Imagenet pre-trained models with
batch normalization. arXiv preprint arXiv:1612, 01452.

Small, S. A., Chawla, M. K., Buonocore, M., and Rapp, P. R., and Barnes, C.
A. (2004). Imaging correlates of brain function in monkeys and rats isolates a
hippocampal subregion differentially vulnerable to aging. Proc. Natl. Acad. Sci.
U.S.A. 101, 7181–7186. doi: 10.1073/pnas.0400285101

Small, S. A., Schobel, S. A., Buxton, R. B., and Witter, M. P., and Barnes, C. A.
(2011). A pathophysiological framework of hippocampal dysfunction in ageing and
disease. Nat. Rev. Neurosci. 12, 585–601. doi: 10.1038/nrn3085

Small, S. A., and Tsai, W. Y., DeLaPaz, R., Mayeux, R., and Stern, Y. (2002).
Imaging hippocampal function across the human life span: is memory decline
normal or not? Ann. Neurol. 51, 290–295. doi: 10.1002/ana.10105

Small, S. A., Wu, E. X., Bartsch, D., Perera, G. M., Lacefield, C. O., DeLaPaz,
R., et al. (2000). Imaging physiologic dysfunction of individual hippocampal
subregions in humans and genetically modified mice. Neuron 28, 653–664.
doi: 10.1016/S0896-6273(00)00144-6

Sperling, R., and Mormino, E., and Johnson, K. (2014). The evolution of
preclinical Alzheimer’s disease: implications for prevention trials. Neuron 84,
608–622. doi: 10.1016/j.neuron.2014.10.038

Sugahara, T., Korogi, Y., Kochi, M., Ikushima, I., Hirai, T., Okuda, T., et al.
(1998). Correlation of mr imaging-determined cerebral blood volume maps with
histologic and angiographic determination of vascularity of gliomas. AJR Am. J.
Roentgenol. 171, 1479–1486. doi: 10.2214/ajr.171.6.9843274

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). “Attention is all you need,” in Advances in Neural Information Processing
Systems (Long Beach, CA), 5998–6008.

Wagenknecht, G., Kaiser, H.-J., Sabri, O., and Buell, U. (2000). “Dynamic
programming algorithm for contrast correction in medical images,” in Nonlinear
Image Processing XI, Vol. 3961 (San Jose, CA: International Society for Optics and
Photonics), 216–226.

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). “Image
quality assessment: from error visibility to structural similarity,” in ProceedingsIEEE
Transactions on Image Processing, 13, 600–612.

Yong, T., Wang, L., Zang, Y., Tian, L., Zhang, X., Li, K., et al. (2007).
Regional coherence changes in the early stages of Alzheimer’s disease: a combined
structural and resting-state functional MRI study. Neuroimage 35, 488–500.
doi: 10.1016/j.neuroimage.2006.11.042

Frontiers in AgingNeuroscience 19 frontiersin.org

https://doi.org/10.3389/fnagi.2022.923673
https://doi.org/10.1001/archneur.64.10.1467
https://doi.org/10.1016/j.nic.2005.09.008
https://doi.org/10.48550/arXiv.1804.03999
https://doi.org/10.1097/00004647-199804000-00011
https://doi.org/10.1126/scitranslmed.3006373
https://dl.acm.org/doi/10.5555/1953048.2078195
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.1016/S2589-7500(21)00205-3
https://doi.org/10.1016/j.biopsych.2019.09.022
https://doi.org/10.1148/radiol.2016161626
https://doi.org/10.1053/j.ackd.2017.03.004
https://doi.org/10.1056/NEJM199603213341202
https://doi.org/10.1148/radiol.2322030273
https://doi.org/10.1016/j.neuron.2013.02.011
https://doi.org/10.4103/2394-8108.178544
https://doi.org/10.1371/journal.pone.0051517
https://doi.org/10.1016/j.celrep.2021.110182
https://doi.org/10.1073/pnas.0400285101
https://doi.org/10.1038/nrn3085
https://doi.org/10.1002/ana.10105
https://doi.org/10.1016/S0896-6273(00)00144-6
https://doi.org/10.1016/j.neuron.2014.10.038
https://doi.org/10.2214/ajr.171.6.9843274
https://doi.org/10.1016/j.neuroimage.2006.11.042
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org

	Deep learning of MRI contrast enhancement for mapping cerebral blood volume from single-modal non-contrast scans of aging and Alzheimer's disease brains
	Introduction
	Materials and methods
	Animal subjects and human participants
	Healthy mouse
	Healthy human
	Human aging
	Human AD

	Image acquisition protocols
	Healthy mouse
	Healthy human
	Human aging
	Human AD

	Preprocessing and partitioning
	Healthy mouse
	Healthy human
	Human aging
	Human AD

	DeepContrast model implementation
	Healthy mouse model
	Healthy human model

	Statistical methods
	Healthy mouse and healthy human
	Prediction vs. ground truth similarity assessment

	Human aging
	Pilot study part 1: Voxel-based analysis on the hippocampal circuit
	Pilot study part 2: Region of interest analysis on aging-related dentate gyrus region
	Utility study: Synthesized CBV maps aging effects over the entire cortex

	Human AD
	Pilot study part 1: Voxel-based analysis on the hippocampal circuit
	Pilot study part 2: Region of interest analysis on AD-related transentorhinal cortex region
	Utility study: Synthesized CBV improves AD classification



	Results
	DeepContrast in the mouse brain
	DeepContrast in the human brain
	DeepContrast visualizes functional lesions in aging and Alzheimer's disease brains
	Normal aging
	Alzheimer's disease


	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


